A deep learning framework to discern and count microscopic nematode eggs
نویسندگان
چکیده
منابع مشابه
a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولLearning to Discern Images Modifies Neural Activity
PLoS Biology | http://biology.plosjournals.org Of the 300 or so viruses that cause disease in humans, HIV may have the greatest adaptive advantage. Like most persistent viruses—including the herpesviruses Epstein–Barr and cytomegalovirus (CMV)—HIV employs various strategies to counteract its host’s response to infection. But HIV possesses a unique ability to sustain a progressive attack on the ...
متن کاملDeep Count: Fruit Counting Based on Deep Simulated Learning
Recent years have witnessed significant advancement in computer vision research based on deep learning. Success of these tasks largely depends on the availability of a large amount of training samples. Labeling the training samples is an expensive process. In this paper, we present a simulated deep convolutional neural network for yield estimation. Knowing the exact number of fruits, flowers, a...
متن کاملA Study of Count-Based Exploration for Deep Reinforcement Learning
Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to ...
متن کاملA Multi-Objective Deep Reinforcement Learning Framework
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on a deep sea treasure environment indicate that the proposed approach is able to converge to the optimal Pareto solutions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-27272-w